Five-Coordinate Diamagnetic Iron(IV) Complexes With A Trigonal Planar Arrangement of Thiolate Ligand Atoms: Synthesis and Crystal Structure of $[FeX(PS_3)]$ (X = Cl, Br or I; PS₃H₃ = [P(C^{'''}₆H₃-3-Me₃Si-2-SH)₃])

Jodi D. Niemoth-Anderson, Kerry A. (Fusie) Clark, T. Adrian George,* and Charles R. Ross, II[†]

> Department of Chemistry, University of Nebraska-Lincoln Lincoln, Nebraska 68588-0304

Received November 12, 1999

One of the intriguing results to emerge from the structure of the FeMo-protein of nitrogenase from Azotobacter vinelandii deduced from X-ray diffraction data is the unprecedented formal three-coordinate geometry for the six μ^3 -S-bridged iron atoms in the [MoFe₇S₉] cluster.¹ To study the chemistry of a single iron atom with this trigonal near-planar geometry, we chose to synthesize tristhiolate complexes of the type $[Fe(SR)_3]^{n-1}$. This strategy has been employed successfully by Koch and by Millar using tetradentate tripodal ligands such as [P(C₆H₄-2-S)₃]³⁻ and [N(CH₂ $o-C_6H_4S_{3}$ ³⁻ to stabilize a series of complexes of iron and nickel in different oxidation states,^{2,3} and more recently by Richards et al. using $[N(CH_2CH_2S)]^{3-}$, $(NS_3)^{3-}$.⁴ The tristhiolatophosphine ligand system was first employed by de Vries and Davison who showed that $[P(C_6H_4-2-S)_3]^{3-}$ coordinates to Tc(III) to form a trigonal bipyramidal complex, $[Tc[P(C_6H_4-2-S)_3](CNC_3H_7)]^{5}$ Here we report that the reaction of [P(C₆H₃-3-Me₃Si-2-S)₃]³⁻ $(PS_3)^{3-}$ (1), with FeCl₂ yields a series of products among which

(i) a stable, neutral iron(IV) complex, [FeCl[P(C₆H₃-3-Me₃Si-2-S)₃]], [FeCl(PS₃)] (2-Cl), and (ii) a stable, neutral binuclear iron-(III) complex, $[Fe_2(PS_3)_2]$ (3), have been crystallographically characterized. These results led to the synthesis and crystallographic characterization of [FeBr(PS₃)] (2-Br) and [FeI(PS₃)] (2-I).

Addition of acetonitrile to a 1:1:3 molar mixture of FeCl₂, PS₃H₃,⁶ and Et₃N produced an immediate emerald solution.⁷ After the solution stirred for 1 h, the solvent was removed in vacuo. The addition of CH₂Cl₂ to the product-mixture resulted in the color rapidly turning brown. After stirring for 0.3 h, 1 equiv of solid ferrocenium hexafluorophosphate, $fc(PF_6)$, was added. Within 0.3 h, the color had changed from brown to intense purple. The latter color change also occurs, but more slowly, in the

Soc. 1995, 117, 8408. (c) Hsu, H.-F.; Kocn, S. A.; Popescu, C. V.; Munck, E. J. Am. Chem. Soc. 1997, 119, 8371.
 (3) (a) Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587. (b) Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.; Bominaar, E. L.; Münck, E. J. Am. Chem. Soc. 1996, 118, 8963.
 (4) Davies, S. C.; Hughes, D. L.; Richards, R. L.; Sanders, J. R. Chem. Commun. 1992, 260.

Commun. 1998, 2699.

(5) (a) de Vries, N.; Davison, A.; Jones, A. G. Inorg. Chim. Acta 1989, 165, 9. (b) de Vries, N.; Cook, J.; Jones, A. G.; Davison, A. Inorg. Chem. 1991, 30, 2662.

(6) Synthesis of PS₃H₃; Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327.

presence of adventitous dioxygen. The solution was stirred for 1 h and then extracted twice with water. Water was removed via cannula. The organic phase was dried over MgSO₄ and then transferred via cannula to a flask where solvent was removed in vacuo. The resulting solid was dissolved in a minimum volume of benzene and 3 times that volume of pentane was added. The solution was cooled to -18 °C for 12 h. Purple [FeCl(PS₃)] was filtered off, washed with pentane, and dried in vacuo. The yield was \sim 40%. The remaining black filtrate was worked-up separately (see Supporting Information). Crystals suitable for X-ray diffraction studies were obtained from the benzene solution. The ¹H NMR spectrum of crystals of 2-Cl shows the presence of C_6H_6 and H₂O in CD₂Cl₂, and C₆H₆, H₂O, and CH₂Cl₂ in C₆D₆. So far no sample of 2-Cl has been obtained solvent-free.⁷ The structure of 2- Cl^8 is shown in Figure 1. Stable iron(IV) complexes are relatively rare.^{9–11} **2-Cl** represents, to the best of our knowledge, the first crystallographically characterized example of (i) a trigonal bipyramidal iron(IV) complex and (ii) a diamagnetic iron(IV) complex. The iron atom is 0.086 Å out of the plane of the three sulfurs toward chlorine. The Fe-S distance is significantly shorter than those reported for other five-coordinate iron(IV) thiolate complexes.⁹ The Fe-P distance is short, and the Fe-Cl distance is long compared to other Fe(IV)-P, -Cl distances.^{9,10} The only complex similar to 2-Cl is the purple, diamagnetic, five-coordinate iron(IV) complex [Fe(CN)[N(CH2CH2NSiMe2But)3]] that contains a sterically bulky tripodal triamidoamine ligand reported by Cummins and Schrock.¹¹ The crystal structure of this complex was not reported.

[FeCl(PS₃)] is not a strong oxidant. In the cyclic voltammogram,12 2-Cl undergoes a reversible one-electron reduction at -0.27 V due to the Fe(IV)/Fe(III) couple followed by a quasireversible reduction at -1.39 V (vs fc⁺/fc couple = 0.00 V). Irreversible oxidation occurs at \sim +1.9 V. Although **2-Cl** is stable

on F^2 using 888 unique reflections, 92 parameters, and 19 restrictions on the geometry of the included disordered benzene solvent molecules yielded wR2 0.092 ($R_1 = 0.034$ on 811 reflections with F > 4s(F)) and GOF = 1.09.

(9) (a) Epstein, E. F.; Bernal, I. *Inorg. Chim. Acta* **1977**, *25*, 145. (b) Miyamae, H.; Sato, S.; Saito, Y.; Sakai, K.; Fukuyama, M. Acta Crystallogr. B 1977, 33, 3942. (c) Sellmann, D.; Geck, M.; Knoch, F.; Ritter, G.; Dengler, J. J. Am. Chem. Soc. **1991**, *113*, 3819. (d) Knof, U.; Weyhermüller, T.; Wolter, T.; Wieghardt, K.; Bill, E.; Butzlaff, C.; Trautwein, A. X. Angew. Chem., Int.

Ed. Engl. **1993**, 32, 1635. (10) (a) Collins, T. J. Acc. Chem. Res. **1994**, 27, 279. (b) Russo, U.; Long, G. J. In *Mössbauer Spectroscopy Applied to Inorganic Chemistry*; Long, G. J., Grandjean, F., Eds.; Plenum: New York, 1989; Vol. 3, p 295. (c) Harbron, S. K.; Higgins, S. J.; Levason, W.; Feiters, M. C.; Steel, A. T. *Inorg. Chem.* 1986, 25, 1789.

(11) Cummins, C. C.; Schrock, R. R. Inorg. Chem. 1994, 33, 395.

(12) Electrochemical studies: Solutions were 0.001 M in CH₂Cl₂ with 0.1 M supporting electrolyte [NBun4][PF6]; scan rate was 50 mV/s, referenced to a silver wire electrode (potentials quoted vs ferrocinium/ferrocene couple = 0.00 V.; 0.535 V vs SCE in CH2Cl2). Complex 2-Cl (Pt glass electrode) showed a reversible one-electron reduction $(E_{\rm pc} + E_{\rm pa})/2 = E_{1/2} (DE_{\rm p}, i_{\rm pa}/i_{\rm pc})$ at -0.27V (54 mV, 1.04) and a quasi-reversible one-electron reduction at -1.39 V (104 mV, 0.69). Data were recorded and analyzed using a Cypress Systems model CS-1090 electroanalytical instrument and software.

[†] Current address: Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794. (1) (a) Kim, J.; Rees, D. C. *Science* **1992**, *257*, 1677. (b) Kim, J.; Rees, D.

^{(1) (}a) Klini, J., Rees, D. C. Science 1992, 257, 1077. (b) Klini, J., Rees, D. C. Stence 1992, 250, 1077. (c) Klini, J.; Rees, D. C. Biochemistry 1993, 32, 7104. (d) Klini, J.; Rees, D. C. Biochemistry 1994, 33, 389. (e) Rees, D. C.; Chan, M. K.; Klini, J. Adv. Inorg. Chem. 1993, 40, 89. (2) (a) Franolic, J. D.; Millar, M.; Koch, S. A. Inorg. Chem. 1995, 34, 1981. (b) Govindaswamy, N.; Quarless, D. A.; Koch, S. A. J. Am. Chem. Soc. 1995, 117, 8468. (c) Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Münck, E. J. Aw. Chem. 597, 1102, 8371.

⁽⁷⁾ In a typical reaction, CH₃CN (20 mL) was added to a mixture of FeCl₂ (0.0114 g, 0.0899 mmol) or FeCl2·4H2O, H3PS3 (0.0502 g, 0.0873 mmol), and Et₃N (0.0317 g, 0.313 mmol). CH₃CN was removed and replaced by CH₂- Cl_2 (20 mL). After excess fc[PF₆] was added, the solution was extracted with H_2O (2 × 20 mL). The resulting purple solid was dissolved in benzene (5 mL), and pentane (15 mL) was added. The yield of **2-CI** (dec pt 201–205 C) was 0.0128 g (0.0193 mmol, 39%). Anal. Calcd (i) for C₂₇H₃₆ClFePS₃-Si₃•1H₂O•1CH₂Cl₂·0.25C₆H₆ (after pumping in vacuo for 1 day): C, 45.09.; H, 5.32. Found: C, 45.25; H, 5.32. (ii) for $C_{27}H_{36}ClFePS_3Si_3\cdot0.17H_2O\cdot0.33CH_2$ -H, 5.32. Found: C, 45.25; H, 5.32. (ii) for $C_{27}H_{36}$ ClFePS₃Si₃·0.17H₂O·0.33CH₂-Cl₂·0.25C₆H₆ (after pumping in vacuo for 3 days): C, 48.49; H, 5.43. Found: C, 48.38; H, 5.41. ¹H NMR (δ CD₂Cl₂) of **2**: 0.35 (s, 27H, SiMe₃), 1.55 (s, H₂O), 7.35 (s, 6H, cocrystallized C₆H₆), 7.39 (t, 3H, J_{HH} = 7.5 Hz, C₆H₃-5<u>H</u>), 7.71 (dd, 3H, J_{HH} = 7.3, J_{HH} = 0.98 Hz, C₆H₃-4H), and 7.98 (d, 3H, J_{HH} = 7.7 Hz, C₆H₃-6H). ³¹P{¹H} NMR (δ CD₂Cl₂) 130.6 (broad). ¹³C-{¹H} NMR (δ CD₂Cl₂) = 0.722 (s, SiMe₃), 128.9 (s, C₆H₃-5C), 129.9 (s, C₆H₃-6C), 130.3 (br, C₆H₃-1C), 140.9 (s, C₆H₃-4C), 143.4 (s, C₆H₃-3C), and 164.3 (s, C₆H₃-2C). UV -vis (CH₂Cl₂) λ_{max} nm (ϵ , M⁻¹ cm⁻¹) 378 (5658), 523 (4532), 733 (4113), 904 (2258). FAB-MS (m/z) : 627 (M⁺ - Cl). (8) Crystal data for **2-Cl**-C₆H₆ (FeClPS₃Si₃C₂H₃₆·C₆H₆) (293 K): cubic, I43m, a = 20.471(1) Å, V = 8579(1) Å³ = 8. Final least-squares refinement on F² using 888 unique reflections 92 parameters and 19 restrictions on the

Figure 1. Thermal ellipsoid diagram of [FeCl(PS₃)] (2-Cl). Selected bond distances (Å) and angles (deg): Fe-S = 2.108(1); Fe-P = 2.157(3); Fe-Cl = 2.281(2); P-Fe-S = 87.65(5); Cl-Fe-S = 92.35(5); Cl-Fe-P = 180.0(2).

in CH₂Cl₂, CHCl₃, and 1,2-C₆H₄Cl₂ for extended periods of time, very rapid decomposition occurs in polar solvents such as CH₃-CN, CH₃OH, and thf at room temperature. The reaction of a CH₂-Cl₂ solution of **2-Cl** with solid AgS₂CNEt₂ at 0 °C resulted in a slow change in color and the isolation of an orange-brown solid. The FAB⁺MS of this product diplays a peak corresponding to the parent ion of [Fe(S₂CNEt₂)(PS₃)], and the broadening of the peaks in the ¹H NMR spectrum suggests it is paramagnetic and therefore a six-coordinate iron(IV) complex.

The formation of $[FeCl(PS_3)]$, as described above, requires (i) coordination of the ligand, (ii) creation of an Fe-Cl bond, and (iii) oxidation of iron(II) to iron(IV). The first step in the reaction includes coordination of the ligand to form an oxygen-sensitive emerald iron(II) complex mixed with other products.¹³ The emerald complex could be four-coordinate [Fe(PS₃)]⁻, or $[Fe(CH_3CN)(PS_3)]^-$ or $[FeCl(PS_3)]^{2-}$. The latter complex can be eliminated at this stage in the reaction because the identical emerald product is formed when $Fe(ClO_4)_2 \cdot 6H_2O$ is used instead of FeCl₂. When the reaction using $Fe(ClO_4)_2 \cdot 6H_2O$ or $FeCl_2$ is done in thf, a distinctly different green color is formed. Thus, although the emerald complex has not been isolated analytically pure, qualitative data suggest it is the anion [Fe(CH₃CN)(PS₃)]⁻ (eq 1; X = Cl, ClO_4). This anion is analogous to the crystallographically characterized iron(II) complexes [Fe(CO)]P(C₆H₃-3- $Ph-2-S_{3}]^{-3b}$ and $[Fe(CO)(NS_{3})]^{-4}$

$$\operatorname{FeX}_{2} + \operatorname{PS}_{3}\operatorname{H}_{3} + 3\operatorname{Et}_{3}\operatorname{N} \xrightarrow{\operatorname{CH}_{3}\operatorname{CN}} \left[\operatorname{Fe}^{II}(\operatorname{CH}_{3}\operatorname{CN})(\operatorname{PS}_{3})\right]^{-} + 3\operatorname{Et}_{3}\operatorname{NH}^{+} + 2\operatorname{X}^{-} (1)$$

The formation of the Fe-Cl bond was studied by repeating the earlier experiments starting with $Fe(ClO_4)_2 \cdot 6H_2O$. First, the reaction of Fe(ClO₄)₂·6H₂O with PS₃H₃/Et₃N/CH₃CN was carried out, followed by removal of solvent in vacuo and addition of CH₂Cl₂. After the emerald solution turned brown (0.3 h), solid $fc(PF_6)$ (1 equiv) was added. Immediately, the solution turned purple. Following workup, 2-Cl was isolated in \sim 50% yield. Second, the reaction of Fe(ClO₄)₂·6H₂O with PS₃H₃/Et₃N/CH₃-CN was carried out, followed by removal of solvent in vacuo and addition of benzene. (n-Bu₄N)Cl (2 equiv) was added to the suspension with stirring. After the emerald colored suspension turned brown (3 h), fc(PF₆) (2 equiv) was added. A purple color appeared (3–4 h). Following workup, 2-Cl was isolated in \sim 20% yield. These results suggest that $[Fe(CH_3CN)(PS_3)]^-$ or $[Fe(PS_3)]^-$

is able to (i) abstract a chlorine atom from CH₂Cl₂ to form an iron(III) anion (eq 2)¹⁴ or (ii) undergo substitution with Cl⁻ to form an iron(II) dianion (eq 3). An ES MS of the brown solid obtained by adding CH₂Cl₂ to a green solution prepared from the mixture FeCl₂/PS₃H₃/Et₃N/CH₃CN showed two peaks with the correct masses and isotope ratios for [FeCl(PS₃)]^{-.15} Electrochemical studies of 2-Cl¹² provide direct evidence for the existence of [Fe^{III}Cl(PS₃)]⁻ and indirect evidence for [Fe^{II}Cl(PS₃)]²⁻. These putative chloroiron(III) and chloroiron(II) complexes are similar to crystallographically characterized [FeCl(NS₃)]⁻⁴ and $[Fe(CN)[P(C_6H_4-2-S)_3]]^{-.2c}$

$$[Fe^{II}(CH_{3}CN)(PS_{3})]^{-} + CH_{2}Cl_{2} \rightarrow [Fe^{III}Cl(PS_{3})]^{-} + CH_{3}CN + \{\bullet CH_{2}Cl\} (2)$$

$$[Fe^{II}(CH_{3}CN)(PS_{3})]^{-} + Cl^{-} \rightarrow [Fe^{II}Cl(PS_{3})]^{2-} + CH_{3}CN$$
(3)

Oxidation, to form the ultimate product 2-Cl, must be done after the formation of the Fe-Cl bond. Thus, if the emerald complex is oxidized by O_2 or fc(PF₆) before the brown solution is formed, 2-Cl is never obtained.

These experimental results have allowed the designed synthesis of [FeBr(PS₃)] (2-Br), [FeI(PS₃)] (2-I), and a one-step synthesis of 2-Cl. Both 2-Br and 2-I have been crystallographically characterized. 2-Br¹⁶ is isostructural with 2-Cl. In the structure of 2-I,¹⁷ the Fe(PS₃) unit is metrically the same as in 2-Cl and 2-Br, but the iodine atom is slightly displaced from the idealized 3-fold axis; $P-Fe-I = 177^{\circ}$.

 $[FeCl(PS_3)]$ can be prepared in one-step by adding $FeCl_3$ (2) equiv) to a solution of PhSn(PS₃)¹⁸ in CH₂Cl₂. The solution turned purple immediately. $FeCl_3$ is the source of {FeCl} and the oxidizing agent.

Acknowledgment. We thank the National Science Foundation EPSCoR Grant, the Research Corporation, and the University of Nebraska, Center for Materials Research and Analysis for support of this work, Dr. Jody Redepenning, Mike Anderson, and David Kurk for help with the cyclic voltammetry, and Tom Brett for help with the crystal structures.

Supporting Information Available: Details of the synthesis of 2-Br and 2-I, procedures for growing crystals (2-Cl, -Br, -I), isolation and identification of products including [Fe₂(PS₃)₂] 3 from black filtrate remaining after isolating 2-Cl, ¹H NMR spectrum of [FeCl(PS₃)], structural diagram of 3, space-filling representation of FeCl(PS₃)], details of X-ray structure determination and labeled figures and atomic coordinates of 2-Cl, 2-Br, 2-I, and 3 (PDF). An X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA993988+

⁽¹³⁾ FAB-MS of emerald solid, 3-NBA matrix (m/z): 1255 ([Fe₂(PS₃)₂]⁺), 627 ([Fe(PS₃)]⁺), 571 ((PS₃)⁺).

⁽¹⁴⁾ The reaction works equally well with CHCl₃ but not with CCl₄ because of solubility problems.

⁽¹⁵⁾ ES MS of the brown solid in the negative ion mode (m/z): 664.0 [Fe³⁷Cl(PS₃)⁻], 662.0 [Fe³⁵Cl(PS₃)⁻]. (16) Crystal data for **2-Br**·1.7C₆H₆ (FeBrPS₃Si₃C₂₇H₃₆·C_{10.25}H_{10.25}) (293 K): cubic, *I*43*m*, *a* = 20.623(1) Å, *V* = 8771 Å³, *Z* = 8. Final least-squares refinement on *F*² using 701 unique reflections, 79 parameters, and 19 restrictions on the geometry of the included disordered C6H6 solvent molecules yielded $R_1 = 0.0604$ ($wR_2 = 0.1528$) and GOF = 1.115.

⁽¹⁷⁾ Crystal data for 2-I·3(1,2-C₆H₄Cl₂) (FeIPS₃Si₃C₂₇H₃₆·C₁₈H₁₂Cl₆) (293 K): monoclinic, C2/c, a = 31.317(6) Å, b = 16.919(3) Å, c = 21.301(4) Å, $\beta = 112.21(3)^\circ$, V = 10449(4) Å³, Z = 4. Final least-squares refinement on F^2 using 7085 unique reflections, 442 parameters, and 50 restrictions on the geometry of the included disordered 1,2-C₆H₄Cl₂ solvent molecules yielded $R_1 = 0.0709$ ($wR_2 = 0.1899$) and GOF = 1.094.

⁽¹⁸⁾ Details of the synthesis, reactions and X-ray structure determination of a series of $PhSn(PS_3)$ complexes will appear in: Clark, K. A. (Fusie); George, T. A.; Brett, T. J.; Ross, C. R., II; Shoemaker, R. K., Inorg. Chem., accepted for publication.